Rotary Measuring Technology Incremental shaft encoders

Heavy duty Type 9000 / 9000 stainless steel

- Highly flexible, chemical resistant PUR cable (stands up to constant flexing at -20 °C ... + 70 °C)
- Temperature and ageing compensation
- Large temperature range
- Short-circuit proof outputs

Type heavy duty:

- · Designed for heavy duty
- Sealed connector

Applications: steel industry, forestry, road construction and wood industry

Type stainless steel:

- Stainless steel housing and shaft
- Precision graduation at high resolution Applications: Food- and pharmaceutical industry, automatic packaging machines, bottling plants, chemical process technology

Mechanical characteristics:

Speed:	max. 6000 min ⁻¹
Rotor moment of inertia:	approx. 15 x 10 ⁻⁶ kgm ²
Starting torque:	< 0.05 Nm
Radial load capacity of shaft*:	140 N
Axial load capacity of shaft:*:	70 N
Weight:	approx. 1.2 kg stainless steel: 2.8 kg

Protection acc. to EN 60 529:	IP 66
EX approval for hazardous areas:	optional zone 2 and 22
Working temperature:	-20° C +85 °C ¹⁾²⁾
Shaft:	stainless steel
Shock resistance acc. to DIN-IEC 68-2-27	1000 m/s2, 6 ms
Vibration resistance acc. to DIN-IEC 68-2-6:	100 m/s ² , 102000 Hz

Electrical characteristics:

Output circuit:	RS 422 (TTL-compatible)	Push-pull
Supply voltage:	5 V (±5 %) or 10 30 V DC	10 30 V DC
Power consumption (no load)	-	typ. 55 mA /
without inverted signal:		max. 125 mA
Power consumption (no load)	typ. 40 mA /	typ. 80 mA/
with inverted signals:	max. 90 mA	max.150 mA
Permissible load/channel:	max. ±20 mA	max. ±30 mA
Pulse frequency:	max. 300 kHz	max. 300 kHz
Signal level high:	min. 2.5 V	min. U _B -2.5 V
Signal level low:	max. 0.5 V	max. 2.0 V
Rise time t _r	max. 200 ns	max. 1 μs
Fall time t _f	max. 200 ns	max. 1 μs
Short circuit proof outputs:1)	yes ²⁾	yes
Reverse connection protection at U _B :	5 V: no,	yes
	10 30 V: yes	

Conforms to CE requirements acc. to EN 61000-6-2, EN 61000-6-4 and EN 61000-6-3

RoHS compliant acc. to EU guideline 2002/95/EG

2) Only one channel allowed to be shorted-out:
(If UB=5 V, short-circuit to channel, 0 V, or +UB is permitted)

(If UB=5-30 V, short-circuit to channel or 0 V is permitted)

Terminal assignment

Signal:	0V	0V	+U _B	+U _B	Α	Ā	В	B	0	0	Shield
		Sensor ²⁾		Sensor ²⁾							
Colour:	WH	WHBN		BN	GN	YE	GY	PK	BU	RD	
	0,5 mm ²		0,5 mm ²								

¹⁾ PH = Shield is attached to connector housing

Isolate unused outputs before initial startup.

10/2008 www.kuebler.com

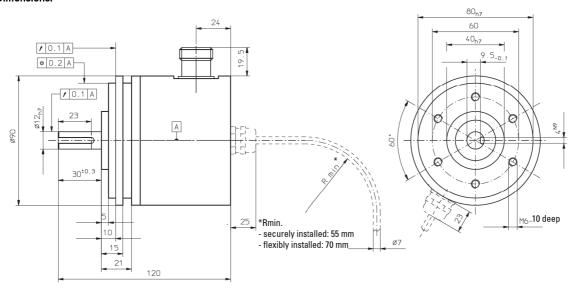
^{1) 80 °}C with cable

²⁾ Non-condensing

¹⁾ If supply voltage correctly applied

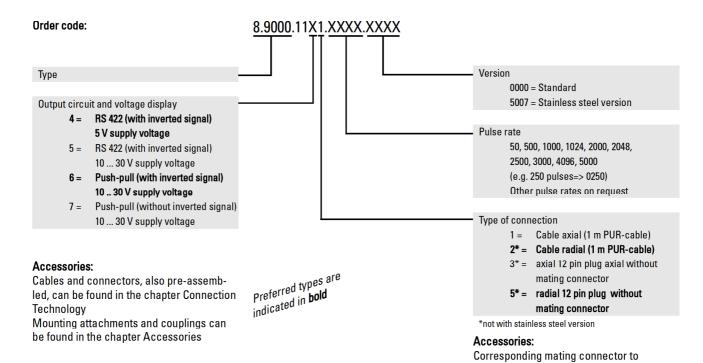
²⁾ Sensor cables are connected to the supply voltage internally if long feeder cables are involved they can be used to adjust or control the voltage at the encoder

⁻ If sensor cables are not in use, they have to be isolated or 0 V $_{Sensor}$ has to be connected to 0 V and $U_{BSensor}$ has to be connected to UB


⁻ Using RS 422 outputs and long cable distances, a wave impedance has to be applied at each cable end.

Rotary Measuring Technology Incremental shaft encoders

Heavy duty Type 9000 / 9000 stainless steel


Dimensions:

Top view of mating side, male contact base:

12 pin plug

10/2008

connection type of 3 or 5 Order No. 8.0000.5012.0000